- 产品描述
恙虫病IgG微量免疫荧光试剂盒
Francisella tularensis IgM IFA Kit
广州健仑生物科技有限公司
主要用途:用于检测人血清中的恙虫病 IgG 抗体
产品规格:12 孔/张,10 张/盒
主要产品包括:包柔氏螺旋体菌、布鲁氏菌、贝纳特氏立克次体、土伦杆菌、钩端螺旋体、新型立克次体、恙虫病、立克次体、果氏巴贝西虫、马焦虫、牛焦虫、利什曼虫、新包虫、弓形虫、猫流感病毒、猫冠状病毒、猫疱疹病毒、犬瘟病毒、犬细小病毒等病原微生物的 IFA、MIF、ELISA试剂。
恙虫病IgG微量免疫荧光试剂盒
我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌、化妆品检测、食品安全检测等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
欢迎咨询
欢迎咨询2042552662
美国FULLER
二维码扫一扫
【公司名称】 广州健仑生物科技有限公司
【】 杨永汉
【】
【腾讯 】 2042552662
【公司地址】 广州清华科技园创新基地番禺石楼镇创启路63号二期2幢101-3室
【企业文化】
在人体内,新分裂的细胞不断补充着肺、皮肤、肝脏及其他器官。但大多数人体细胞不能无限期地分裂下去——每一次分裂后,染色体末端的细胞计时器就会缩短。当这种名为端粒的计时器变得极短时,细胞就不再分裂,导致器官和组织退化,这种现象经常发生在衰老阶段。但存在一种绕过这种倒计时现象的方法:一些细胞会产生一种端粒酶,这种酶可以修复端粒,并让细胞无限期地分裂下去。
索尔克生物研究所科研人员9月19日在《基因与发育》杂志上发表研究报告称,他们发现端粒酶可以被关闭。
该研究报告资深作者维基·伦德布拉德教授说:“早前的研究认为端粒酶一旦聚合,在需要时可随时利用。我们意外地发现端粒酶有一个‘关闭’开关,这个开关可以让它分解。”
理解如何操纵这一“关闭”开关——进而延缓端粒变短的过程,可以为治疗衰老性疾病带来新方法,比如,在生命晚期再造重要的人体器官。
伦德布拉德与报告*作者、研究生蒂莫西·图西对酿酒酵母展开了研究。早前,伦德布拉德的团队利用这种简单的单细胞生物体揭示了端粒酶的大量信息,并为在人体细胞中寻找类似结果奠定基础。
图西说:“我们本希望能够研究端粒酶复合体的每一种成分,但事实上这并不是一项简单的任务。”图西制定了一套方法,可以让他以*的分辨率观察处于细胞生长和分裂期的每一种成分。
每当细胞分裂时,细胞的整个基因组就会被复制。当基因组进行复制时,图西发现端粒酶在准备组合成一个复合体时,会缺失一个重要的分子亚基。但在基因组全部复制后,这个缺失的亚基会加入它的同伴中,形成一个完整的、充分活跃的端粒酶复合体。在此基础上,端粒酶可以补充不断磨损的染色体末端,并确保健康的细胞分裂。
In the body, newly dividing cells are constantly replenished with lungs, skin, liver and other organs. But most human somatic cells do not divide indefiniy - the cell timer at the end of the chromosome will be shortened after each division. When this timer called omere becomes extremely short, the cells no longer divide, resulting in the degeneration of organs and tissues, a phenomenon that often occurs during the aging phase. But there is a way to get around this countdown: Some cells produce a omerase that repairs omeres and allows cells to divide indefiniy.
Researchers at the Salk Institute for Biological Research published a study in the journal Gene and Development on September 19th saying they found that omerase can be turned off.
Professor Velen Lundbrand, senior author of the study, said: "Earlier studies suggested that omerase, once polymerized, may be readily available when needed, and we have unexpectedly found that omerase has a 'switch-off' switch It can be broken down. "
Understanding how to manipulate this "switch-off" switch, which in turn slows omere shortening, can bring new ways of treating aging diseases, such as rebuilding vital human organs in later life.
Lund Brad and the report's first author, graduate student Timothy Tucci studied Saccharomyces cerevisiae. Earlier, Lund Brad's team used this simple single-cell organism to reveal a wealth of information on omerase and laid the groundwork for finding similar results in human cells.
Tucci said: "We would have liked to study each of the components of the omerase complex, but in fact it is not a simple task." Tucci has developed a methodology that allows him to distinguish Rate observed in the cell growth and division of each component.
Every time a cell divides, the entire genome of the cell is copied. When the genome was replicating, Tucci found that omerase was missing an important molecular subunit in preparation for its assembly into a complex. But after the genome is fully replicated, this missing subunit joins its companion to form a complete and fully active omerase complex. On this basis, omerase can replenish the end of worn chromosomes and ensure healthy cell division.